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Miroslav Kotrla*

Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 180 40 Praha 8, Czech Republic
~Received 22 December 1995; revised manuscript received 3 June 1996!

We derive continuous stochastic equations governing the asymptotic behavior of growth from a master
equation for discrete growth models with local relaxation. We consider several simple models of epitaxial
growth ~the Family, the Wolf-Villain, and the Das Sarma–Tamborenea models and their modifications!. In
111 dimensions, we derive, for each model, the corresponding Langevin equation and identify leading terms
that determine the universality class. Our results for models with local relaxation are in agreement with recent
computer simulations. The applicability of the method in 211 dimensions is demonstrated in the case of the
Family model. Problems of the procedure, in particular regularization in the continuous limit, are discussed.
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I. INTRODUCTION

In recent years several simple discrete growth models for
molecular-beam epitaxy~MBE! growth have been proposed
and investigated@1–6#. The main purpose of their study was
measuring scaling exponents for kinetic roughening, which
determine the asymptotic behavior of growth on a large
length scale and in a long time limit. The most important
result of kinetic roughening studies@7# is that a large variety
of different growth models can be divided into only a few
universality classes, each class being characterized by spe-
cific values of two scaling exponents@7#. The question
whether discrete models for MBE belong to a different uni-
versality class was only recently resolved by extensive nu-
merical simulations@8#.

In the coarse-grained picture, evolution of the growing
surface is usually described by a stochastic Langevin equa-
tion with additive noise for the height variableh(x,t) as a
function of the lateral surface coordinatex and timet. In the
context of MBE growth several equations were suggested
and studied@4,9,10#. It is generally believed that there is a
correspondence between discrete growth models and con-
tinuous stochastic equations. The most common way of es-
tablishing the link between these two approaches is a simple
comparison of critical exponents received from computer
simulations of the discrete model and exponents for the con-
tinuous equation obtained by a Flory-type argument,
renormalization-group analysis, or a direct numerical inte-
gration @7#. There are also attempts to reveal this relation in
an explicit way. When the equation can be written in the
form

]h~x,t !

]t
5¹2K„h,¹2h,~¹h!2, . . . …1h~x,t !,

where K is a function of scalars such ash, ¹2h, and

(¹h)2 andh represents noise, a way to construct the corre-
sponding discrete model was proposed@11#. On the other
hand, a~nonrigorous! procedure for establishing a continu-
ous equation corresponding to a discrete model, starting from
the master equation in discrete space, was suggested by Plis-
chke and co-workers@12,13#. A similar procedure has been
also introduced, and used for various models with Arrhenius-
type dynamics, by Zangwill and co-workers@14,15#. The for-
mal procedure was clearly explained in a paper by Vveden-
sky et al. @16# and in a different context by Fox and Keizer
@17#. Recently, a relation between the Kardar-Parisi-Zhang
~KPZ! equation@18# and the restricted solid-on-solid~SOS!
model was explicitly clarified by employing this procedure
@19#. However, there are several difficulties with this proce-
dure @13#; in particular, it has been found that it fails for a
full diffusion model with random deposition and diffusion
with Glauber-type dynamics@20#.

In this paper, we apply the procedure of Ref.@16# to a set
of simple growth models with local relaxation just after
deposition, thus fulfilling the following conditions.

~a! The SOS condition is satisfied.
~b! The deposition rate is constant and uniform for all

sites.
~c! A particle incident to a randomly selected sitex can

jump to a nearest-neighbor site and stick there. Each model
is further characterized by specific growth rules, which de-
termine when and in what direction a jump occurs depending
on a local configuration~cf. Sec. II!.

~d! Evaporation or migration of already stuck particles is
not allowed.

The simplest example of a model of this kind is the model
introduced by Family@21#. Conditions~a!–~d! are also ful-
filled by toy models for MBE growth; several such models
have been formulated in literature@1–6#. Although the rules
of particular models are often very similar, the asymptotic
properties can be quite different. Due to the ostensible simi-
larity, very long simulations are needed to see the differ-
ences. Therefore, an alternative approach to study these mod-
els is of particular interest. Two of the most frequently*Electronic address: kotrla@fzu.cz
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studied models are the Wolf-Villain~WV! model@1# and the
Das Sarma–Tamborenea~DT! model @2#. While computer
simulations of the Family model are unambiguous and in
accord with analytical solution of the Edwards-Wilkinson
equation@22#, which is believed to correspond to this model,
for a long time the situation was not so clear in the case of
the WV and DT models.

We explain in detail the procedure for finding Langevin
equation for the set of above specified models. We show
that, as expected, the corresponding equation is a conserva-
tion equation. We establish explicitly the form of Langevin
equations corresponding to the Family model, the WV
model, the DT model, and two modifications of the WV
model. Analyzing coefficients in front of various space de-
rivatives in these equations, we discuss their asymptotic be-
havior. We concentrate on models in 111 dimensions, but
the applicability of our method in 211 dimensions is also
documented for the Family model.

In Sec. II we define the models studied. The method for
obtaining the Langevin equation from the master equation is
recalled in Sec. III. In Sec. IV the structure of transition
moments is discussed and an easy and clear way of calculat-
ing first transition moments in the case of relaxation models
is described. The results of the most difficult work are con-
tained in Sec. V, where all possible local configurations for
the three models selected are analyzed and jump probabili-
ties are explicitly calculated. Section VI is devoted to the
problem of passage from discrete to continuous expressions.
Quantitative results are presented in Sec. VII. Finally, a con-
clusion is given in Sec. VIII.

II. MODELS STUDIED

Here we explain growth rules in models that will be ex-
plicitly studied below. Since most of our results~excluding
Sec. VII E! are for one-dimensional substrates~i.e., for
growth in 111 dimensions! we describe models, for the sake
of clarity, in 111 dimensions. The configuration of a discrete
SOS model is given by a surface height functionhi(t), which
sets the height of the surface above a lattice site with a hori-
zontal coordinatei at timet. The actual horizontal coordinate
x of site i is x5 ia i, ai being the lattice constant in the
horizontal direction~parallel to the average surface orienta-
tion!. For further purposes we explicitly distinguish the lat-
tice spacing in the vertical and horizontal directions.

The Family model@21# describes deposition of particles
that minimize their height, i.e., physically the behavior of
particles that minimize their energy in the gravitational field
~see Fig. 1!. A particle sticks at the site of incidencei only
when it is a local minimum of height, i.e.,

hi<hi11 , hi<hi21 .

When only one of these conditions does not hold~tilted sur-
face!, the particle sticks at the neighboring site with lower
height. In the case of incidence to a local maximum of height

hi.hi11 , hi.hi21 ,

we distinguish two variants of the Family model. In the first,
which we denoteF1, a new particle jumps with equal prob-
ability ~1/2! to any of the neighboring sitesi21 or i11,

regardless of their relative height. In the second variant
(F2) a new particle jumps always to the lowest site. We
shall consider these two variants of this model in order to
ascertain how much a slight modification of the model rules
effects the resulting equation.

In the Wolf-Villain model@1#, as well as in other relax-
ation models for MBE growth, the relaxation is controlled by
the number of bonds between nearest neighbors. A newly
arriving particle maximizes the number of bonds with near-
est neighbors. The algorithm is very similar to that of the
F2 model if we replace the heighthi by 2ni , whereni
represents the number of lateral neighbors at sitei ~cf. Fig.
1!.

We also studied two modifications of the WV model,
which we call WV↑ and WV↓ ~cf. Refs.@3# and@23#!. Both
differ from the WV model only in the case of a tie, i.e., when
both an incidence site and one of the neighboring sites offer
one lateral bond to create and the other neighbor does not
offer more ~two! bonds to create. While in the case of the
standard WV model no jump occurs in such a situation, in
the case of the WV↑ model a jump to a higher site offering
one bond happens with a probabilityp, if such a site exists.
Similarly, in the WV↓ model a jump to a lower site offering
one bond happens with a probabilityq. The Das Sarma–
Tamborenea model@2# ~to be precise, the DT1 variant of this
model as defined by Krug in Ref.@24#! is very similar to the
WV model, but it makes no distinction between states with
one or two lateral neighbors~see Fig. 1!.

III. DERIVATION OF STOCHASTIC EQUATIONS

The method used in@16,14,19# basically consists of two
steps: first, the derivation of the Langevin equation for a

FIG. 1. Comparison of the Family, the WV, and the DT models.
Arrows indicate all possible jumps that can happen after the inci-
dence of a new particle~dashed box!.
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discrete set of height variables from a master equation using
the Kramers-Moyal expansion@25#, and second, the transi-
tion from the equation system for a discrete set of heights to
an equation for a continuous functionh(x) of a continuous
spatial variablex. We recall both steps here.

The evolution of a surface is given by the master equation
~see, e.g., Ref.@25#!

]P~H,t !

]t
5(

H8
W~H8,H !P~H8,t !2(

H8
W~H,H8!P~H,t !,

~1!

whereW(H,H8) denotes the transition matrix from a con-
figurationH ~a configurationH[$hi% i51

N represents a set of
heightshi at every lattice site andN denotes the total number
of sites on substrate! to a subsequent configurationH8 and
P(H,t) is the probability that the system is in the configura-
tion H at time t.

In the case of relaxation models two subsequent configu-
rations differ just by the addition of a new particle to one
column. This leads to the following form of the transition
matrix:

Wrelax~H,H8!5
1

t(i Fwi
~1!d~hi8 ,hi1a'!)

jÞ i
d~hj8 ,hj !

1wi
~2!d~hi218 ,hi211a'! )

jÞ i21
d~hj8 ,hj !

1wi
~3!d~hi118 ,hi111a'! )

jÞ i11
d~hj8 ,hj !G ,

~2!

wherewi
(1) denotes the configuration-dependent probability

of sticking at incidence sitei , wi
(2) denotes the probability of

a jump to the left after incidence at sitei , andwi
(3) denotes

the probability of a jump to the right after incidence at site
i . The constantt denotes the average time of deposition of a
layer, given by the flux of incoming particles, anda' is the
vertical ~perpendicular to the surface! lattice spacing.

In order to demonstrate the difference between the models
with local relaxation and models with full surface diffusion,
we present also the form of the transition matrix for diffusion
models, although we are not going to study these models
here. In this case we have two processes: random deposition
and diffusion. In deposition a particle is deposited at a ran-
domly selected site~no relaxation!. The transition matrix is

Wdep~H,H8!5
1

t8(i Fd~hi8 ,hi1a'!)
jÞ i

d~hj8 ,hj !G . ~3!

During diffusion any surface particlei can jump to sitej
with a probabilityv i→ jP^0,1& depending on the local con-
figuration according to model rules. The transition matrix has
the form

Wdiff~H,H8!5D(
i j

v i→ jd~hi8 ,hi2a'!d~hj8 ,hj1a'!

3 )
kÞ i , j

d~hk8 ,hk!, ~4!

wherev i→ j is the configuration-dependent probability of a
jump from sitei to site j . Usually one is restricted to models
where only diffusion between nearest neighbors is allowed.
The average time of deposition of a layert8 and diffusion
constantD sets the frequency of deposition and diffusion,
respectively. The total transition matrix is the sum of contri-
butions from deposition and diffusion.

Using a particular transition matrix in the master equation
~1!, we obtain a full stochastic description of a given discrete
growth model. However, finding the solution of such a mas-
ter equation is possible only in exceptional cases. In the ap-
proach suggested by Vvedensky and co-workers@16,14,15#
the master equation is approximated by the Fokker-Planck
equation through the usual Kramers-Moyal expansion

]P~H,t !

]t
52(

i

]

]hi
@Ki

~1!P~H,t !#

1(
i , j

1

2

]2

]hi]hj
@Ki , j

~2!P~H,t !#, ~5!

where

Ki
~1!~H !5(

H8
~hi82hi !W~H,H8! ~6!

is the first moment and

Ki j
~2!~H !5(

H8
~hi82hi !~hj82hj !W~H,H8!, ~7!

is the second moment of transition matrix.
Then the equivalent Langevin equation is written@25#

]hi~ t !

]t
5Ki

~1!~H !1h i~ t !. ~8!

Hereh represents white Gaussian noise with zero mean and
covariance given by the second transition moment

^h i~ t !&50,

^h i~ t !h j~ t8!&5Ki j
~2!~H !d~ t2t8!.

The set of equations~8! describes the evolution of heights
hi at site i as a function of heights at sitei and discrete
neighboring sites. To obtain the Langevin equation for the
function h(x) of the continuous variablex one needs some
smoothing procedure. The essence of the method of Vveden-
sky and co-workers is the assumption that there exists a
smooth functionh(x) that is obtained from a function inter-
polating through the pointshi(t) and then one expresses
heights at neighboring sites using a Taylor expansion. This is
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a crucial and highly nontrivial step. At the end one obtains a
continuous Langevin equation with additive noise with zero
mean

]h~x,t !

]t
5Ki

~1!
„h~x,t !…1h~x,t !. ~9!

In practice this procedure is done byregularizationin which
nonanalytical quantities that enter the discrete Langevin
equation are replaced by analytic functions. We will discuss
this problem in detail below~see Sec. VI!.

The procedure works in the case of diffusion models with
Arrhenius dynamics@16,14# and also in the case of the far-
from-equilibrium restricted SOS~RSOS! growth model@19#;
however, there is also one case where it fails. Siegert@20#
demonstrated that it does not work for the full diffusion
model with the HamiltonianH5( i uhi112hi u4 and Glauber
dynamics. Computer simulations show that this model is un-
stable, while direct application of the above method yields a
positive Laplacian term, indicating stable behavior. It is not
completely clear why the methods fails. In this paper, we are
not going to attack this problem; rather we explore results in
the case of relaxation models that are simpler than diffusion
models and close to the RSOS model for which the method
works well @19#. Nevertheless, we would like to comment on
possible reasons for this failure.

The conditions when the procedure is correct have not
been clearly formulated. As far as the first step is concerned,
the Fokker-Planck equation is obtained by the usual
Kramers-Moyal expansion in the limit of a small parameter
1/V. It is supposed that only small jumps occur and that the
solution and transition rates vary only slowly with the state
@25#, i.e., with heightshi in our case; the change of variables
~jump! in our case is vertical displacement given bya' .
Then, provided the intrinsic fluctuations are not too large
@17#, Eq. ~8! is correct in the limita'→0 and it is sufficient
to know only the first and second moments.

In the case of models with local relaxation, the form of
moments @Ki

(n)}(a')n; see below# suggests the choice
1/V5a' . Transition rateswi

(1) ,wi
(2) ,wi

(3) usually do not ex-
plicitly depend on the height increment associated with the
deposition of a particle; it is true for all models studied be-
low. The dependence of rates onhi is often given byu func-
tions or by a certain continuous function obtained after regu-
larization~see below!. Hence, in this case we expect that we
can use the Fokker-Planck equation as an approximation to
the master equation.

In the case of models with diffusion, ratesv i→ j may or
may not explicitly depend on the changes of heights due to
the diffusion jump. For example, in models studied by
Vvedensky and co-workers@16,14# v i→ j depends only on
the number of nearest neighbors and is given, as in the re-
laxation models studied here, byu functions.

On the other hand, in the model considered by Siegert
@20#, the dependence both on the value of heights and on the
changes of heights due to diffusion is nontrivial. We suspect
that it is the primary reason why this method does not work
here. There are also other factors that may conspire. As will
be shown in Sec. IV, models with diffusion lead to a more
complicated structure of higher moments than in the case of
models with local relaxation. In particular the second mo-

ment, which determines the noise in the Langevin equation,
contains off-diagonal terms. Finally, relaxation models are
also simpler with respect to the type of noise appearing in the
problem. Noise in a relaxation model is due only to random
deposition, whereas in a nonequilibrium diffusion model two
kinds of noise, nonconserved~rising from deposition! and
conserved~from diffusion!, have to be considered. It is not
clear how to correctly incorporate this aspect into the deri-
vation of a continuous equation.

IV. TRANSITION MOMENTS

In this section we first write down the expressions for
transition moments for models with local relaxation and for
full diffusion models; then we introduce a method for calcu-
lating the first transition moment of conserved models with
local relaxation.

Substitution of~2! into ~6! gives the following form of
first transition moment@16#:

Ki
~1!5

a'

t
@wi

~1!1wi11
~2! 1wi21

~3! #. ~10!

Henceforth we use such units that the prefactora' /t is equal
to one. This is done by rescaling the vertical coordinate and
time. The explicit expressions for jump probabilitieswi

(1) ,
wi
(2), andwi

(3) for the models considered will be constructed
in Sec. V.

As a consequence of the fact that subsequent configura-
tions differ only in height at one site, all higher moments are
diagonal and proportional toKi

(1),

Ki1i2i3••• i n
~n! 5~a'!n21d i1i2d i1i3•••d i1i nKi

~1! .

In the case of diffusion models the first moment is given by
@20#

Ki
~1!5a'D@v i21→ i1v i11→ i2v i→ i212v i→ i11#1

a'

t8
.

Contrary to models with local relaxation, higher transition
moments arenot diagonal, e.g., the second moment reads

Ki j
~2!5a'

2Dd i j @v i21→ i1v i11→ i1v i→ i211v i→ i11#

2a'
2D~d i , j111d i , j21!@v i→ j1v j→ i #1

a'
2

t8
d i j .

In the rest of this section we show how one can effec-
tively calculate the first moment in the case of relaxation
models. Equation~10! can be modified to a more convenient
form. We will show that employing left-right symmetry and
conserving the condition

wi
~1!1wi

~2!1wi
~3!51 , ~11!

it is sufficient to determine onlywi
(2) ~or wi

(3)) in order to
obtainK (1) and hence the Langevin equation.

Due to local growth rules,wi
(2) depends only on height

differences of neighboring sites

h1[hi112hi , h2[hi212hi ~12!
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and~in the case of rules depending on number of bonds! also
on

h11[hi122hi11 , h22[hi222hi21 .

Now, we suppose thathi(t) can be replaced by a smooth
function such that the expansions

h15 (
k51

`
]kh~x!

]xk
ai
k

k!
, h25 (

k51

`
]kh~x!

]xk
~2ai!

k

k!
,

h115 (
k51

`
]kh~x!

]xk
ai
k

k!
~2k21!,

h225 (
k51

`
]kh~x!

]xk
~2ai!

k

k!
~2k21! ~13!

are valid.
Assuming further thatwi

(2) is a continuous function of
height differences, we can expresswi

(2) as a sum of products
of various space derivatives ofh(x). It is convenient to ar-
range individual terms according to the total number of de-
rivatives. Because every space derivative in~13! is associ-
ated with multiplication by lattice spacingai ~recall that
x5 ia i), we can writewi

(2) in the form

wi
~2!5 (

n50

`

Cn~x!ai
n , ~14!

whereCn(x) denotes a combination of terms, each with a
total of n space derivatives.

Since the growth rules considered are symmetric with re-
spect to left-right reflection, the probabilitywi

(3) can be ob-
tained fromwi

(2) simply by changing the orientation of the
horizontal axisx. Explicitly for h1 and h2 we have the
correspondence

h1↔h2 ,
]kh~x!

]xk
ai
k↔

]kh~x!

]~2x!k
ai
k5

]kh~x!

]xk
~2ai!

k,

which shows that the change of orientation can be formally
carried out by replacingai by 2ai . Hence

wi
~3!5 (

n50

`

Cn~x!~2ai!
n. ~15!

Functions with shifted indicesi61, which are needed in
~10!, are obtained by the Taylor expansion

wi11
~2! 5 (

k50,n50

`
]kCn~x!

]xk
ai
k1n

k!
,

wi21
~3! 5 (

k50,n50

`
]kCn~x!

]xk
~2ai!

k1n

k!
. ~16!

Finally, condition~11! yields

wi
~1!5122 (

n50
n even

`

Cn~x!ai
n . ~17!

After insertion of~16! and ~17! into ~10!, we have

Ki
~1!5122 (

n50
n even

`

Cn~x!ai
n12 (

k50,n50
n1k even

`
]kCn~x!

]xk
ai
k1n

k!

5112
]

]x S (
n52
n even

`

(
k51

n21
]k21Cn2k~x!

]xk21

ai
n

k! D . ~18!

If we identify

J~x![2 (
n52
neven

`

(
k51

n21
]kCn2k~x!

]xk21

ai
n

k!

as a horizontal current, we receive, according to~9!, the con-
serving equation

]h~x,t !

]t
511

]J~x!

]x
1h~x,t !. ~19!

The first term corresponds to a constant flux of incoming
particles and the second term represents the contribution of
the configuration-dependent horizontal current. Note that we
obtain a conservation equation for any SOS model with local
relaxation ~within nearest neighbors!. Particularly, we can
see that the so-called KPZ term@18# (¹h)2 cannot be present
in the resulting Langevin equation.

V. DETERMINATION OF JUMP PROBABILITIES

The jump probabilitywi
(2) depends on a local configura-

tion. In this section we shall find this dependence explicitly
for several models with local relaxation. For each model we
start with a complete classification of configuration types and
then we determine for each particular configuration the prob-
ability of a jump to the left or right nearest-neighbor site.

A. Family model

The considerations for this model are simple, but it is
instructive to explain them in detail before studying more
complex models for MBE. In the Family model, the inci-
dence sitei is more convenient for a particle than sitei11
whenhi<hi11⇔u(h1)51; here the discreteu function is
defined by

u~k!5H 1, k>0

0, k,0
~20!

with kPZ andZ being the set of integers. On the other hand,
site i11 is more convenient than sitei when

hi.hi11⇔u~h1!50⇔12u~h1!51.

Analogous expressions are valid for sitei21. We use these
expressions to divide all local configurations into four groups
~see Fig. 2! according to possible jumps: no jump, a jump to
the left, a jump to the right, a jump either to the left or to the
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right. For any local configuration, exactly one of the expres-
sions shown in Fig. 2 is equal to one and the remaining
expressions are zero.

In the F1 variant of the Family model, a new particle
jumps to the left with certainty in configuration from the
second group and with probability 1/2 in configuration from
the fourth group. The probabilitywF1

(2) is a sum of the prob-
abilities of a jump to the left over all configurations@26#,

wF1
~2!5@12u~h2!#u~h1!1 1

2 @12u~h2!#@12u~h1!#

5 1
2 @12u~h2!#@11u~h1!#, ~21!

~this expression was already found in Ref.@16#!.
To obtain proper form ofwF2

(2) , the probability of a jump
to the left in theF2 model, we have to divide the fourth
group into three subgroups according to relative heights at
sitesi21 andi11.

~4a! A jump to the left occurs with certainty when

@12u~h2!#@12u~h1!#@12u~h22h1!#51,

i.e., when the height at sitei21 is lower than that at site
i11.

~4b! The case when heights at sitesi61 are equal can be
expressed using the Kroneckerd as

@12u~h2!#@12u~h1!#d~h22h1!51.

In this case a jump to the left is equally probable as a jump
to the right.

~4c! If

@12u~h2!#@12u~h1!#@12u~h12h2!#51,

a particle jumps to the right, lower sitei11.

These three expressions form a complete representation of
group 4 since the Kroneckerd and discreteu function satisfy

u~2k!1u~k!511d~k!. ~22!

Having the division of local configurations, we can immedi-
ately write down the probability of a jump to the left in the
F2 model

wF2
~2!5@12u~h2!#u~h1!1@12u~h2!#@12u~h1!#

3~12u~h22h1!1 1
2 d~h22h1!!. ~23!

B. Wolf-Villain, Das Sarma–Tamborenea,
and modified models

The dependence on the number of bonds at sites within
nearest neighbors of an incidence sitei in growth rules can
be transcribed into the dependence on height differences of
neighboring sites within second nearest neighbors of an in-
cidence site. There is a large number of different types of
local configurations that have to be considered. In order to
simplify their classification, we divide every local configura-
tion into left and right parts, which we call semiconfigura-
tions and at first classify separately. We determine different
types of semiconfigurations according to the number of
bonds before and after a jump. Then we determine when~for
which combination of the left and the right semiconfigura-
tions! this fictive jump actually happens.

We concentrate our interest again on jumps to the left and
investigate the left semiconfigurations~this term stands for a
part of the whole configuration given by columns at sites
i22, i21, and i ). Let us denote byn the number of left
neighbors (n50,1) of a particle incident to sitei and bym
the total number of lateral neighbors (m50,1,2) that the
same particle would have after jump toi21. We denote a
group of semiconfigurations corresponding to these numbers
by Ln

m . All such possible groups are schematically figured,
together with their representation using discrete functions, in
Fig. 3.

This enumeration is again disjunctive and complete since

L0
21L0

1~b!512u~h2!, L0
1~a!1L0

05d~h2!,

L1
01L1

1512u~2h2!, L0
1[L0

1~a!1L0
1~b! ,

L0
01L0

11L0
21L1

01L1
1521d~h2!2u~h2!2u~2h2!51.

~24!

Replacingh2↔h1 andh22↔h11 , we receive right semi-
configurations (R) instead of left ones.

Now, the construction of the total probability of a jump to
the left for the WV modelwWV

(2) is straightforward: it is a sum
of contributions from all combinations of left and right semi-
configurations

wWV
~2! 5L0

2~R0
01R0

11R1
11R1

01 1
2 R0

2!1L0
1~R0

01 1
2 R0

1!.
~25!

Jump probabilities for modifications of the WV model with
additional jumps in the case of a tie are@cf. ~25!#

wWV↑
~2! 5L0

2~R0
01R0

11R1
11R1

01 1
2 R0

2!1L0
1~R0

01 1
2 R0

1!

1L1
1~R0

01R0
1!p, ~26!

wWV↓
~2! 5L0

2~R0
01R0

11R1
11R1

01 1
2 R0

2!1L0
1~R0

01 1
2 R0

1!

1L0
1~b!~R1

01R1
1!q. ~27!

FIG. 2. Groups of local configurations in the Family model. The
upward ~downward! arrow indicates that the surface particle at a
given column can occupy any higher~lower! site relative to the new
particle ~dashed box!.
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The Das Sarma–Tamborenea model makes no distinction be-
tween a site with one or two lateral neighbors, which results
in the following form of jump probability:

wDT
~2!5~L0

11L0
2!~R0

01 1
2 R0

11 1
2 R0

2!. ~28!

VI. PASSAGE TO CONTINUOUS EQUATIONS

In this section we describe how to combine particular re-
sults obtained in previous sections together and how to carry
out the passage from a discrete to a continuous description.
Our calculations start with a discrete-value set of heightshi
at discrete sitesi . In this representation we classify different
kinds of local configurations~as shown in Figs. 2 and 3! and
we obtain a jump probabilitywi

(2) for a particular model
@Eqs. ~21!, ~23!, and ~25!–~27!#. These expressions contain
discrete u and d functions. However, the procedure de-
scribed in Sec. III assumes thatw(2) is a continuous differ-
entiable function of the space coordinatex obtained by some
coarse-graining procedure. Here we describe a regularization
procedure in which the step functionu(k), defined on the set
of integers by~20!, is replaced by a continuous function
ũ(j). There is uncertainty in the form of the regularization
function ũ(j) and, as we will show below, different choices
can lead to different results.

Some forms of regularization functions have been sug-
gested in the literature@13,15,16,19#, but to our knowledge
the problem of a proper choice of regularization scheme has
not been discussed. One suggested choice is

ũ~j!5@11tanh~Cj!#/2, ~29!

whereC is an arbitrary positive parameter, with the exact
u function being obtained in the limitC→`.

In general, one can suppose that the regularization func-
tion is given by expansion

ũ~j!5 (
k50

`

Akj
k. ~30!

Some authors@16,19# considered this form withA051,

ũ~j!511 (
k51

`

Akj
k, ~31!

but we do not adhere to this restriction.
Our focus is on the properties of the surface on large

length and time scales. Since the asymptotic scaling is deter-
mined by nonzero terms of lowest order in Eq.~9!, we can
restrict ourselves in the expansions considered in Sec. III to a
finite order and neglect higher-order terms. In the calculation
below, we shall consider terms only up to the fourth order.
Since the argument of theu function is always a height dif-
ference of neighboring sites~which is of first order in space
derivatives!, it is sufficient to treat expansion~30! also only
to fourth order

ũ~j!5A01A1j1A2j
21A3j

31A4j
4. ~32!

The definition of the continuousd̃ function by relation~22!
yields the approximation up to fourth order

d̃~j!52A02112A2j
212A4j

4. ~33!

Instead of the form~29!, we shall consider the ‘‘shifted’’
form @27#

ũ~j!5$11tanh@C~j1a!#%/2, ~34!

where a is in the interval (0,1/2&; a preferable choice
a51/2 gives a symmetric approximation to the discreteu
function, the odd function with respect to the point
x521/2. The reason for our choice is that with this choice,
we can satisfy relation~22!, whereas regularization~29! does
not allows us to define thed function. Relation~22! is im-
portant in models for MBE and theF2 model because we
have to distinguish, in the classification of configurations, the
situation where the argument of the discreteu function is
zero. The regularization has to conserve this difference, i.e.,
relation~22!. This problem is not encountered in the case of
the single-step SOS or restricted SOS model@19#, where
regularization~29! can be used.

From the behavior of the approximativeũ function ~34!,
we can see that coefficientsAk fulfill @27#

A0P~1/2,1!, A1.0, A2,0. ~35!

In Sec. VII, we show that much information can be obtained
without a detailed study of the coefficientsAk , assuming
only the validity of ~35!.

Substituting continuous representations ofu andd func-
tions ~32! and~33! into the expression for the jump probabil-

FIG. 3. Groups of semiconfigurations for models with growth
rules depending on the number of bonds. The horizontal bar indi-
cates the equality of heights and the meaning of arrows is the same
as in Fig. 2.
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ity w(2) and retaining terms up to fourth order, we obtain the
continuous stochastic Langevin equation in the form

]h~x,t !

]t
5n

]2h~x,t !

]x2
1

l2

3

]

]x S ]h~x,t !

]x D 3
1

l1

2

]2

]x2 S ]h~x,t !

]x D 21K
]4h~x,t !

]x4
1F1h~x,t !,

~36!

where coefficientsn, l1 , l2, andK depend on the growth
rules of a model and on the regularization used and are ex-
pressed as a combination of coefficientsAk .

We carried out this substitution and the following simpli-
fications using symbolic manipulations. Thus we not only
avoided tedious work but also checked the completeness of
the division into semiconfigurations. For each model, we
also independently found an expression forwi

(1) , i.e., the
probability of sticking at an incidence site, we obtained the
probabilitywi

(3) from wi
(2) using left-right symmetry, and we

checked the validity of~11!, which served as a test of the
proper expression forwi

(2) .

VII. RESULTS

Here we present values of coefficientsn, l1 , l2, andK
appearing in the general form of the Langevin equation~36!
for all models studied.

A. Family model

In the case of theF1 model, we have

n52A1 , l152A222A0A21A1
2 ,

l256A3 , K5
A1

6
~423A0!,

whereas for theF2 model, we obtain

n52A1~324A012A0
2!,

l154A0A1
223A1

222A0A212A2 ,

l256~24A1A219A322A1
318A3A0

214A0A2A1

216A3A0!,

K5
A1

6
~12219A018A0

2!.

When coefficientsAk satisfy relations~35! then, in both
cases, the coefficientn is positive and the scaling is deter-
mined by the Laplacian term@29# ~for the F1 model the
coefficientn is less than or equal to that for theF2 model!,
i.e., both models belong to the Edwards-Wilkinson~EW!
class as expected. When the form of regularization~31! with
A051 is used there is no difference in coefficientsn, l1, and
K for both variantsF1 andF2, which is also true for regu-
larization ~34!, with a nonzero shift (a.0) in the limit
C→`.

B. Wolf-Villain model

The coefficients for the WV model are

n52A1~2A021!~A021!2,

l152~4A2210A0A224A0A1
228A0

3A212A0A1
2116A2A0

2

1A1
2!,

l256~2A314A3A01A1
314A1A222A0A1

325A3A0
2

16A0
2A2A112A0

3A3210A0A2A1!,

K5
A1

6
~219164A0144A0

3295A0
2!.

The coefficientn is positive in our regularization scheme
~34! with a.0 and finiteC. In contrast to the Family model,
it goes to zero whenC→`. In the regularization schemes for
which conditions~35! are not strictly satisfied, for example,
in scheme ~31! with A051 or in scheme ~29! with
A051/2, we get identicallyn50, which contradicts the re-
sults of the simulations@8#.

C. Modified models

The permission of upward jumps~with probability p) in
the WV↑ model tends to cause instability. From the expres-
sion for the Laplacian coefficientn in this case,

n52A1~A021!@2A0
223A0112p~2A0

225A011!#,

it can be seen that for anyA0P(1/2,1) there exists a critical
probability

pc5
~2A021!~A021!

2A0
225A011

,

at which n50. The behavior is similar to that of the WV
model, i.e., stable (n.0), for p,pc , whereas we obtain a
negative value ofn for p.pc , which indicates unstable
growth. Note again that for the scheme~31! we get identi-
cally n50, in contradiction with results of simulations
@3,23#.

There is no such transition in the WV↓ model. The coef-
ficient

n52A1~A021!@2A0
223A0112q~A011!#

increases with an increasing value of the probabilityq. This
is in agreement with the intuitive expectation that the per-
mission of additional downward jumps increases the stability
of the model and also agrees with results of recent simula-
tions @23#.

D. Das Sarma–Tamborenea model

The coefficientsn, l1 , l2, andK for this model are

n50,l250,

l152~12A2A0
224A0A1

21A1
212A0

2A1
228A0

3A222A0A2!,
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K5A0A1~316A0
2210A0!.

Note that the values of the coefficientsn andl2 are zero for
any Ak , i.e., for any regularization of theu function. The
coefficientK is strictly negative provided conditions~35! are
satisfied. The absence of the Laplacian term implies perti-
nence to a different universality class than the EW class. The
resulting equation has the form of the so-called conserved
KPZ equation~see Ref.@7#!.

E. Family model in 211 dimensions

The procedure described above for the calculation of
jump probabilities and determination of stochastic equation
corresponding to the discrete relaxation model can be
straightforwardly generalized into 211 dimensions introduc-
ing two horizontal coordinatesx and y and considering all
possible combinations of space derivatives@28#. Now we
must investigate conditions at an incidence site and four
nearest neighbors instead of at an incidence site and two
nearest neighbors as in 111 dimensions.

In the case of theF1 model, we identify five configura-
tion types according to the number of nearest-neighbor sites
lower than the incidence site. We found that the stochastic
equation governing the asymptotic behavior of theF1 model
in 211 dimensions contains a positive Laplacian term

]h~x,y;t !

]t
511

2

3
A1~A0

21A011!

3S ]2

]x2
h~x,y!1

]2

]y2
h~x,y! D1h~x,y;t !.

Because of the increasing number of relevant sites that de-
termine the sticking site of the incident particle~5 in 111
dimensions versus 13 in 211 dimensions! and the corre-
sponding rapid increasing number of configuration types, we
did not study models with growth rules dependent on the
number of bonds in 211 dimensions, although it would be of
great interest.

VIII. CONCLUSION

In this paper we have derived Langevin equations for dis-
crete growth models with local relaxation. We explicitly
studied the asymptotic behavior of several models with local
relaxation: the Family model, the Wolf-Villain model, and
the Das Sarma–Tamborenea model. Our results can be sum-
marized as follows.

In the case of the Family model, we reproduced previ-
ously known results@16#, but in addition we have investi-
gated the effects of the modification of growth rules on the
resulting equations. We compared two variants of this model
with slightly different rules. For both modelsF1 andF2, we
obtained a positive Laplacian term, which dominates the as-
ymptotic behavior, i.e., the Family model belongs to the EW
class as expected. Moreover, in the limitC→` for the pa-
rameter of regularization scheme, the values of the Laplacian
coefficientn for both models coincide. This confirms that the
difference between both variants is slight and does not effect
the asymptotic behavior. At the same time, we see that the

procedure we used is sensitive enough to distinguish both
variants properly.

In the case of relaxation models for MBE-like growth, our
results show that the asymptotic behavior is different for the
WV model and the DT model. For the WV model, we found
a positive Laplacian term in the corresponding stochastic
equation~i.e., the WV model belongs to the EW class!, in
agreement with recent computer simulations of discrete mod-
els @8,23#. Conversely, in the case of the DT model, we ob-
tain a zero Laplacian term, and also the coefficient in front of
the term¹(¹h)3 is identically zero. The first asymptotically
relevant term for the DT model is¹2(¹h)2; the coefficient
in front of the fourth-order derivative is negative. Hence we
arrived at the conserved KPZ equation. However, the rough-
ness exponent calculated from the height-height correlation
function ~the so-called exponentz) in the DT model@30,31#
is different from results of renormalization-group calcula-
tions for the conserved KPZ equation@4,9#, and also the
exponent for the time dependence of the surface width~the
so-called exponentb) found in simulations of the DT model
@30,31# is different from the exponent predicted by the
renormalization-group calculation@4,9# or the exponent ob-
tained by direct integration@32# of the conserved KPZ equa-
tion. Here we should note that there is one feature of these
models that so far is not completely understood. It has been
revealed in simulations@33,30# that both the WV model and
the DT model exhibit, over a long time, the increase of an
average step size that leads to anomalous scaling@33,30,24#.
In the WV model, the average step size saturates and so it
does not effect the asymptotic behavior that is fully de-
scribed by the EW equation. However, in the case of the DT
model, it seems that the average step size increases infinitely;
moreover, the DT model displays another peculiarity: spatial
multiscaling @31#. If these features are really characteristic
for the asymptotic behavior of the DT model then they
should be contained in the continuous description. On the
other hand, properties of the conserved KPZ equation are
only partially known@32,24#. Our result provides a link be-
tween the DT model and the conserved KPZ equation, but
because of the approximative character of our procedure we
cannot exclude that the continuous description of the DT
model is more complicated.

In the study of the WV model, we encountered a problem
connected with the approximation of the discrete theta func-
tion that was not mentioned in previous works. We have
found that the regularization procedure is a delicate problem.
There is no rigorous treatment of the regularization proce-
dure and consequently there is an uncertainty in the choice of
the regularization scheme. We have shown that the values of
coefficients in the resulting Langevin equation can be quite
different for different approximations of theu functions ap-
pearing in the discrete Langevin equation~some schemes
lead to a zero Laplacian term in the equation corresponding
to the WV model!. We do believe that a proper choice is that
conserving all symmetries present in a discrete model. This
choice is supported by the agreement of our results with
results of recent simulations. This problem does not affect
the result for the DT model, where we obtain a zero Laplac-
ian term independent of the approximation of theu function
used.

Our procedure can be straightforwardly applied also to
other relaxation models suggested in the literature
@11,31,23#. An advantage of our procedure is the easy incor-
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poration of variations in growth rules in comparison to
costly, extensive numerical simulations. We illustrated this
on two variations of the WV model. One of them, the
WV↑ model~with upward jumps in the case of a tie!, shows
an interesting behavior: a transition between stable and un-
stable growth, which has been found in recent simulations as
well @3,23#.

On the other hand, the method based on the formal
Kramers-Moyal expansion and the subsequent transition to a
continuous equation is not applicable in general for models
with dynamics controlled by a local energy function. A spe-
cific feature of the model for which the failure of the method
was demonstrated@20# is that the functional contains an ex-
plicit dependence on the vertical size of a particle together

with a dependence on the surface height. We suspect that in
this case the first step, i.e., the transition to a set of discrete
Langevin equations, is not correct. Nevertheless, at the mo-
ment it is not completely clear why the method gives correct
results in some cases while it breaks down in others. A math-
ematically rigorous formulation of the formal method is
missing and more work is needed to clarify this problem, in
particular to understand the role of noise in this approach.
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