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Stochastic equations for simple discrete models of epitaxial growth
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We derive continuous stochastic equations governing the asymptotic behavior of growth from a master
equation for discrete growth models with local relaxation. We consider several simple models of epitaxial
growth (the Family, the Wolf-Villain, and the Das Sarma—Tamborenea models and their modifizations
1+1 dimensions, we derive, for each model, the corresponding Langevin equation and identify leading terms
that determine the universality class. Our results for models with local relaxation are in agreement with recent
computer simulations. The applicability of the method in12dimensions is demonstrated in the case of the
Family model. Problems of the procedure, in particular regularization in the continuous limit, are discussed.
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[. INTRODUCTION (Vh)? and » represents noise, a way to construct the corre-
sponding discrete model was propoddd]. On the other
In recent years several simple discrete growth models fohand, a(nonrigorou$ procedure for establishing a continu-
molecular-beam epitaxyMBE) growth have been proposed ous equation corresponding to a discrete model, starting from
and investigatei1 —6]. The main purpose of their study was the master equation in discrete space, was suggested by Plis-
measuring scaling exponents for kinetic roughening, whichthke and co-workerfl2,13. A similar procedure has been
determine the asymptotic behavior of growth on a largegiso introduced, and used for various models with Arrhenius-
length scale and in a long time limit. The most importanttype dynamics, by Zangwill and co-workdts4,15. The for-
result of kinetic roughening StUdiég] is that a large variety mal procedure was clearly exp|ained in a paper by Vveden-
of different growth models can be divided into only a few sky et al.[16] and in a different context by Fox and Keizer
universality classes, each class being characterized by sper7]. Recently, a relation between the Kardar-Parisi-Zhang
cific values of two scaling exponen{¥]. The question (Kpz) equation[18] and the restricted solid-on-soli&09
whether discrete models for MBE belong to a different Uni-mode| was exp||c|t|y clarified by emp|0ying this procedure
versality class was only recently resolved by extensive nuf19]. However, there are several difficulties with this proce-
merical simulationg8]. dure[13]; in particular, it has been found that it fails for a
In the coarse-grained picture, evolution of the growingfy|l diffusion model with random deposition and diffusion
surface is usually described by a stochastic Langevin equagith Glauber-type dynamick20].
tion with additive noise for the height variabh{x,t) as a In this paper, we app|y the procedure of Rté_fG] to a set
function of the lateral surface coordinatend timet. Inthe  of simple growth models with local relaxation just after
context of MBE growth several equations were suggeste@eposition, thus fulfilling the following conditions.
and studied4,9,10. It is generally believed that there is a (@) The SOS condition is satisfied.
correspondence between discrete growth models and con- (b) The deposition rate is constant and uniform for all
tinuous stochastic equations. The most common way of esites.
tablishing the link between these two approaches is a simple (c) A particle incident to a randomly selected sitecan
comparison of critical exponents received from computejump to a nearest-neighbor site and stick there. Each model
simulations of the discrete model and exponents for the conjs further characterized by specific growth rules, which de-
tinuous equation obtained by a Flory-type argumenttermine when and in what direction a jump occurs depending
renormalization-group analysis, or a direct numerical intepn a local configuratiorcf. Sec. I).
gration[7]. There are also attempts to reveal this relation in  (d) Evaporation or migration of already stuck particles is
an explicit way. When the equation can be written in thenot allowed.
form The simplest example of a model of this kind is the model
introduced by Familyj21]. Conditions(a)—(d) are also ful-
filled by toy models for MBE growth; several such models
have been formulated in literatuf&—6]. Although the rules
of particular models are often very similar, the asymptotic
where K is a function of scalars such as, V?h, and properties can be quite different. Due to the ostensible simi-
larity, very long simulations are needed to see the differ-
ences. Therefore, an alternative approach to study these mod-
"Electronic address: kotrla@fzu.cz els is of particular interest. Two of the most frequently

dh(x,t)
at

=V2K(h,V?h,(Vh)?, .. .)+ n(xt),
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studied models are the Wolf-VillailtWV) model[1] and the r-n r-n
Das Sarma—Tamborend®T) model [2]. While computer Tt roa b
simulations of the Family model are unambiguous and in W= —

accord with analytical solution of the Edwards-Wilkinson T T
equation 22|, which is believed to correspond to this model,
for a long time the situation was not so clear in the case of
the WV and DT models. Family model

We explain in detail the procedure for finding Langevin
equation for the set of above specified models. We show c- r-n
that, as expected, the corresponding equation is a conserva- Yin r'ﬁ — v
tion equation. We establish explicitly the form of Langevin pal —HE
equations corresponding to the Family model, the WV ] |
model, the DT model, and two modifications of the WV
model. Analyzing coefficients in front of various space de-
rivatives in these equations, we discuss their asymptotic be- Wolf-Villain model
havior. We concentrate on models ir-1 dimensions, but
the applicability of our method in 21 dimensions is also . o
documented for the Family model. VY eyttt

In Sec. Il we define the models studied. The method for 3 B
obtaining the Langevin equation from the master equation is ] ] I | | |
recalled in Sec. lll. In Sec. IV the structure of transition
moments is discussed and an easy and clear way of calculat-
ing first transition moments in the case of relaxation models Das Sarma-Tamborenea model
is described. The results of the most difficult work are con-
tained in Sec. V, where all possible local configurations for FIG. 1. Comparison of the Family, the WV, and the DT models.
the three models selected are analyzed and jump probabilfArTows indicate all possible jumps that can happen after the inci-
ties are explicitly calculated. Section VI is devoted to thedence of a new particldashed box
problem of passage from discrete to continuous expressions.
Quantitative results are presented in Sec. VII. Finally, a conregardless of their relative height. In the second variant

r
b
i

mi

clusion is given in Sec. VIII. (F2) a new particle jumps always to the lowest site. We
shall consider these two variants of this model in order to
Il. MODELS STUDIED ascertain how much a slight modification of the model rules

effects the resulting equation.

Here we explain growth rules in models that will be ex-  In the Wolf-Villain mode[1], as well as in other relax-
plicitly studied below. Since most of our resulisxcluding  ation models for MBE growth, the relaxation is controlled by
Sec. VIIB are for one-dimensional substratéise., for  the number of bonds between nearest neighbors. A newly
growth in 1+1 dimensionswe describe models, for the sake arriving particle maximizes the number of bonds with near-
of clarity, in 1+1 dimensions. The configuration of a discrete est neighbors. The algorithm is very similar to that of the
SOS model is given by a surface height functip(t), which ~ F2 model if we replace the height, by —n;, wheren;
sets the height of the surface above a lattice site with a horirepresents the number of lateral neighbors atisiief. Fig.
zontal coordinate at timet. The actual horizontal coordinate 1).

x of sitei is x=ia|, a, being the lattice constant in the  We also studied two modifications of the WV model,
horizontal direction(parallel to the average surface orienta- which we call WV} and WV, (cf. Refs.[3] and[23]). Both
tion). For further purposes we explicitly distinguish the lat- differ from the WV model only in the case of a tie, i.e., when
tice spacing in the vertical and horizontal directions. both an incidence site and one of the neighboring sites offer

The Family mode[21] describes deposition of particles one lateral bond to create and the other neighbor does not
that minimize their height, i.e., physically the behavior of offer more (two) bonds to create. While in the case of the
particles that minimize their energy in the gravitational field standard WV model no jump occurs in such a situation, in
(see Fig. 1 A particle sticks at the site of incidenceonly  the case of the WY model a jump to a higher site offering
when it is a local minimum of height, i.e., one bond happens with a probabiliy if such a site exists.
Similarly, in the WV| model a jump to a lower site offering
one bond happens with a probability The Das Sarma
Tamborenea mod¢R] (to be precise, the DT1 variant of this
model as defined by Krug in Rdi24]) is very similar to the
WV model, but it makes no distinction between states with
bne or two lateral neighborsee Fig. 1

hi<h,,,, h<h;_;.

When only one of these conditions does not hiilded sur-
face), the particle sticks at the neighboring site with lower
height. In the case of incidence to a local maximum of heigh

hi>hi 1, hi>hi_q,
e . . . Ill. DERIVATION OF STOCHASTIC EQUATIONS
we distinguish two variants of the Family model. In the first, Q
which we denotd=1, a new particle jumps with equal prob-  The method used ifi16,14,19 basically consists of two
ability (1/2) to any of the neighboring siteis-1 ori+1, steps: first, the derivation of the Langevin equation for a



54 STOCHASTIC EQUATIONS FOR SIMPLE DISCRETE ... 3935

discrete set of height variables from a master equation using

the Kramers-Moyal expansiof®5], and second, the transi- ~ War(H,H')=D> w;_;6(h/ ,hi—a,)d(h h;+a,)

tion from the equation system for a discrete set of heights to b

an equation for a continuous functidr{x) of a continuous )

spatial variablex. We recall both steps here. Xkl;_[_ o(hy,h), (4)
The evolution of a surface is given by the master equation H

(see, e.g., Ref25) where w;_,; is the configuration-dependent probability of a

jump from sitei to sitej. Usually one is restricted to models
AP(H,t) where only diffusion between nearest neighbors is allowed.
o =D W(H',H)P(H’,t)— >, W(H,H")P(H,1), The average time of deposition of a layer and diffusion
H' H' ) constantD sets the frequency of deposition and diffusion,
respectively. The total transition matrix is the sum of contri-
butions from deposition and diffusion.
whereW(H,H’) denotes the transition matrix from a con-  Using a particular transition matrix in the master equation
figurationH (a configuratiorH={h;}\, represents a set of (1), we obtain a full stochastic description of a given discrete
heightsh; at every lattice site ani denotes the total number 9rowth model. However, finding the solution of such a mas-
of sites on substrateo a subsequent configuratidh’ and ter equation is possible only in exceptional cases. In the ap-
P(H,1) is the probability that the system is in the configura-Proach suggested by Vvedensky and co-workef;14,13
tion H at timet. the m_aster equation is approximated by the Fokkgr—PIanck
In the case of relaxation models two subsequent configu€duation through the usual Kramers-Moyal expansion
rations differ just by the addition of a new particle to one

cqur_nn. This leads to the following form of the transition JP(H.1) :_2 i[Ki(l)p(H,t)]
matrix: ot T oh;
2
(2)

1 +2 5 [KPPHDL, ()

Wre|ax(H.H’)=;2 wa(h hi+a)[] &h! h) 2 oh;oh;
i J#i
where
+wi(2)5(hi’,l,hi,l+ai)j¢]:[_l s(h hy)
K{Y(H)=2 (h/=h)W(H,H") 6)
HI

+w¥s(h/, 1, hiata) I1 shi by,
£+l is the first moment and

2

Kif'(H)=2 (h/=h)(hj=h)W(H.H"), (D)

wherewi(l) denotes the configuration-dependent probability H

of sticking at incidence siti, w(*) denotes the probability of ¢ the second moment of transition matrix.

a jump to the left after incidence at siteandw(® denotes Then the equivalent Langevin equation is writf@s)
the probability of a jump to the right after incidence at site

i. The constant denotes the average time of deposition of a (1)

layer, given by the flux of incoming particles, and is the ——=K{P(H)+ (1), ®)

vertical (perpendicular to the surfactattice spacing. a

In order to demonstrate the difference between the model
with local relaxation and models with full surface diffusion,
we present also the form of the transition matrix for diffusion
models, although we are not going to study these models

Fere 7 represents white Gaussian noise with zero mean and
covariance given by the second transition moment

here. In this case we have two processes: random deposition {m()=0,
and diffusion. In deposition a particle is deposited at a ran- ’ @ )
domly selected siténo relaxation. The transition matrix is (mi(t) ;1)) =Ki (H)a(t—t").

The set of equation@) describes the evolution of heights
, , , h; at sitei as a function of heights at site and discrete

Wi H,H') = 72 o(h; ’hi+ai)jl;[i thi.hyp . ) neighboring sites. To obtain the Langevin equation for the
function h(x) of the continuous variablg one needs some

smoothing procedure. The essence of the method of Vveden-

During diffusion any surface particle can jump to sitej sky and co-workers is the assumption that there exists a
with a probabilityw;_,; € (0,1) depending on the local con- smooth functiorh(x) that is obtained from a function inter-
figuration according to model rules. The transition matrix hagpolating through the pointé;(t) and then one expresses

the form heights at neighboring sites using a Taylor expansion. This is
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a crucial and highly nontrivial step. At the end one obtains ament, which determines the noise in the Langevin equation,
continuous Langevin equation with additive noise with zerocontains off-diagonal terms. Finally, relaxation models are
mean also simpler with respect to the type of noise appearing in the
problem. Noise in a relaxation model is due only to random
deposition, whereas in a nonequilibrium diffusion model two
kinds of noise, nonconservedising from deposition and
conservedfrom diffusion), have to be considered. It is not
In practice this procedure is done bsgularizationin which ~ clear how to correctly incorporate this aspect into the deri-
nonanalytical quantities that enter the discrete Langevirvation of a continuous equation.

equation are replaced by analytic functions. We will discuss

Jh(x,t)
at

=K (h(x,1)+ 7(x,t). (9)

this problem in detail belowsee Sec. Vi IV. TRANSITION MOMENTS
The procedure works in the case of diffusion models with . . i i )
Arrhenius dynamic$16,14 and also in the case of the far- In this section we first write down the expressions for

from-equilibrium restricted SOSRSOS growth mode[19]; trans_ition_ moments Tor models with local relaxation and for
however, there is also one case where it fails. Sielgd} full diffusion models; then we introduce a method for calcu-

demonstrated that it does not work for the full diffusion ating the first transition moment of conserved models with

model with the Hamiltoniatd=3,|h;, ,—h;|* and Glauber ~l0c@! relaxation. , _ ,

dynamics. Computer simulations show that this model is un- Substitution of(2) into (6) gives the following form of

stable, while direct application of the above method yields 4irSt transition momeng16]:

positive Laplacian term, indicating stable behavior. It is not a

completely clear why the methods fails. In this paper, we are Ki(l):_L[Wi(l)+wi(§r)l+wi(§)l]' (10)

not going to attack this problem; rather we explore results in T

the case of relaxation models that are simpler than diffusio

models and close to the RSOS model for which the metho

works well[19]. Nevertheless, we would like to comment on . . . . L ()

possible reasons for this failure. t|rr12e. The e;<pI|C|t expressions for. jump probabllltlmé ,
The conditions when the procedure is correct have nofYi>), andw(® for the models considered will be constructed

been clearly formulated. As far as the first step is concerned Sec. V. _
the Fokker-Planck equation is obtained by the usual AS @ consequence of the fact that subsequent configura-
Kramers-Moyal expansion in the limit of a small parametert'fms differ only in he|_ght at o(rl)e site, all higher moments are
1/Q. It is supposed that only small jumps occur and that thediagonal and proportional thij~,
solution and transition rates vary only slowly with the state ) 1
. . . . ) ; KW =(a,)" s
[25], i.e., with heightdh; in our case; the change of variables igigigip L iqio
(jump) in our case is vertical displacement given ay. o ) o
Then, provided the intrinsic fluctuations are not too large!N the case of diffusion models the first moment is given by
[17], Eq.(8) is correct in the limita, —0 and it is sufficient 20]
to know only the first and second moments.
In the case of models with local relaxation, the form of K(M=g3 D[w,_; i+ w11 .;
(n) n i !
moments [K;"«(a.)"; see belowW suggests the choice

— iti (1) W@ W®3) - . . . -,
1) =a, . Transition ratesv;"”,w;™’,w;™" usually do notex-  contrary to models with local relaxation, higher transition

plicitly depend on the height increment associated with th,;ments ar@ot diagonal, e.g., the second moment reads
deposition of a particle; it is true for all models studied be- ’ ’

Ipw. The dependepce of rates bnis of'ten given byé func- Ki<j2):aiD5ij[wi—1—>i t @it w1t i1]
tions or by a certain continuous function obtained after regu-
larization (see below. Hence, in this case we expect that we

"Henceforth we use such units that the prefaatofr is equal
0 one. This is done by rescaling the vertical coordinate and

o6 KW,

iqig” i1

a
@i 1T @]t PR

2

2 L
can use the Fokker-Planck equation as an approximation to —a D06 jr1t b j-)lwinjt o]+ 6.
the master equation.
In the case of models with diffusion, rates_,; may or In the rest of this section we show how one can effec-

may not explicitly depend on the changes of heights due taively calculate the first moment in the case of relaxation
the diffusion jump. For example, in models studied bymodels. Equatioril0) can be modified to a more convenient
Vvedensky and co-workergl6,14 w;_; depends only on form. We will show that employing left-right symmetry and
the number of nearest neighbors and is given, as in the reconserving the condition
laxation models studied here, Wyfunctions.

On the other hand, in the model considered by Siegert w+w@+w®=1, (1)
[20], the dependence both on the value of heights and on the
changes of heights due to diffusion is nontrivial. We suspectt is sufficient to determine onlw(® (or w®) in order to
that it is the primary reason why this method does not workobtainK*) and hence the Langevin equation.
here. There are also other factors that may conspire. As will Due to local growth ruleswi(z) depends only on height
be shown in Sec. IV, models with diffusion lead to a moredifferences of neighboring sites
complicated structure of higher moments than in the case of
models with local relaxation. In particular the second mo- h,=hi.1—h;, h_=h;_;—h (12
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and(in the case of rules depending on number of byt
on

hyi=hjio—hjyy, h__=h_,—hj_;.

Now, we suppose that;(t) can be replaced by a smooth

function such that the expansions

Jh(x) (—a*

Jh(x) (—ap*

k_
axK k! (2°=1)

(13
=1

are valid.
Assuming further thawv!?) is a continuous function of

height differences, we can expresg) as a sum of products

of various space derivatives bfx). It is convenient to ar-
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wl=1-2 Z‘,O Ca(x)af. (17)

n even

After insertion of(16) and (17) into (10), we have

- 5 Cy(x) afth
KP=1-2 3 c,a+2 > Tl A
n=0 k=0n=0  JX k!

n even n+k even
I < & T 3]
=14+2—
L2z | 2 2~ T (18
n even
If we identify
© n-1 _k n
9*C,_(x) a
=22 > —nka—”
n=2 k=1 OX k!

neven

as a horizontal current, we receive, according¥o the con-
serving equation

Jh(x,t) dJ(X)
ot =1+(;—X+7](X,t).

(19

range individual terms according to the total number of de-

rivatives. Because every space derivative(iB) is associ-
ated with multiplication by lattice spacing, (recall that
x=ia|), we can writew(?) in the form

w?= nZO Cn(X)aﬁ‘y (14

where C,(x) denotes a combination of terms, each with a

total of n space derivatives.

The first term corresponds to a constant flux of incoming
particles and the second term represents the contribution of
the configuration-dependent horizontal current. Note that we
obtain a conservation equation for any SOS model with local
relaxation (within nearest neighboys Particularly, we can
see that the so-called KPZ tefrb8] (Vh)? cannot be present

in the resulting Langevin equation.

V. DETERMINATION OF JUMP PROBABILITIES

Since the growth rules considered are symmetric with re-  The jump probabilityvvi(z) depends on a local configura-

spect to left-right reflection, the probabilitlyi(s) can be ob-

tion. In this section we shall find this dependence explicitly

tained fromw(?) simply by changing the orientation of the for several models with local relaxation. For each model we

horizontal axisx. Explicitly for h, and h_ we have the
correspondence

Fh(x)

aHakh(x) .
ax* 7 9(—x)

k&=

Fh(x)
axk

h,<h_, (—apk,

start with a complete classification of configuration types and
then we determine for each particular configuration the prob-
ability of a jump to the left or right nearest-neighbor site.

A. Family model

The considerations for this model are simple, but it is

which shows that the change of orientation can be formallynstructive to explain them in detail before studying more

carried out by replacing by —a;. Hence

w§3’=n§0 Co(X)(—ap™ (15)

Functions with shifted indices+ 1, which are needed in
(10), are obtained by the Taylor expansion

JCp(x) af* "

(
Wi k=On=0 X k!
O-)kc (X) (_a )k+n
(3) — n (
Wi_l_k:O,n:O I K (16)

Finally, condition(11) yields

complex models for MBE. In the Family model, the inci-
dence sitd is more convenient for a particle than site 1
whenh;<h; ;< 60(h.)=1; here the discreté® function is
defined by

1, k=0

=10 k<o

(20

with ke Z andZ being the set of integers. On the other hand,
sitei +1 is more convenient than sitewhen

hi>h; ;1= 60(h,)=0=1-6(h,)=1.

Analogous expressions are valid for site1. We use these

expressions to divide all local configurations into four groups
(see Fig. 2 according to possible jumps: no jump, a jump to
the left, a jump to the right, a jump either to the left or to the
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=[1-0(h_)]o(h,)+[1—6(h_)][1—6(h,)]

8 (h_)0 (hy) (1-6(h-))6(hy) X (1—6(h_—h,)+ 1 8(h_—h.)). (23)
1. 1 2. '_I'T'I _ +

U |
¥ B. Wolf-Villain, Das Sarma—Tamborenea,

(N (1—6(h L oh 1 o(h and modified models
(h-)( _F.,( +)) (1-6( —)2-(, —6(hs) The dependence on the number of bonds at sites within

3. [ 4. H nearest neighbors of an incidence sitim growth rules can

u gl 1y be transcribed into the dependence on height differences of
Y vy neighboring sites within second nearest neighbors of an in-
cidence site. There is a large number of different types of

FIG. 2. Groups of local .Conf'gurat'ons in the Family mo.del' The local configurations that have to be considered. In order to
upward (downward arrow indicates that the surface particle at a _.

given column can occupy any high@ower) site relative to the new ?'mp.“? t?efltr CI%SS!ﬂE?Uon’twe (:]'.Vlge ever)fl local 'Com;llgura-
particle (dashed box ion into left and right parts, which we call semiconfigura-

tions and at first classify separately. We determine different
types of semiconfigurations according to the number of
onds before and after a jump. Then we determine wf@an
hich combination of the left and the right semiconfigura-
tiong) this fictive jump actually happens.

We concentrate our interest again on jumps to the left and
investigate the left semiconfiguratiofthis term stands for a
part of the whole configuration given by columns at sites
i—2,i—1, andi). Let us denote byn the number of left
neighbors 1=0,1) of a particle incident to siteand bym

the total number of lateral neighborsn&0,1,2) that the
Wy =[1-6(h-)]6(h.)+ z [1-6(h_)][1-6(h.)] same particle would have after jump ite-1. We denote a
group of semiconfigurations corresponding to these numbers
by L. All such possible groups are schematically figured,
together with their representation using discrete functions, in
Fig. 3.
This enumeration is again disjunctive and complete since

right. For any local configuration, exactly one of the expres-
sions shown in Fig. 2 is equal to one and the remainin
expressions are zero.

In the F1 variant of the Family model, a new particle
jumps to the left with certainty in configuration from the
second group and with probability 1/2 in configuration from
the fourth group. The probabilitw?) is a sum of the prob-
abilities of a jump to the left over all configuratiofi26],

= 2[1—-6(h )1+ 6ch)], (22)

(this expression was already found in Reif6]).
To obtain proper form ofvl3), the probability of a jump
to the left in theF2 model, we have to divide the fourth

group into three subgroups according to relative heights at L3 +|_1<b 1-6(h_), L1<a>+ |_0 s(h_),
sitesi—1 andi+1.
(4a A jump to the left occurs with certainty when L(1’+ Li: 1-6(—h_), |_(1)E|_(1)(a)Jr Lé(b)'

[1-6(h)][1-6(h)][1—6(h_—h,)]=1,
' ! L0+ LA+ L2+ L0+ L =2+ 8(h_)—6(h_)— 6(—h_)=1.
i.e., when the height at site-1 is lower than that at site (24
i+1.
(4b) The case when heights at siies1 are equal can be Replacingh_—h_ andh__—h, ., we receive right semi-

Now, the construction of the total probability of a jump to

[1-6(h_)][1—6(h )]é(h_—h,)=1. the left for the WV modelv{Z), is straightforward: it is a sum
of contributions from all combinations of left and right semi-
In this case a jump to the left is equally probable as a jumgonfigurations
to the right.

(40) If wiZ =L3(R3+Rs+RI+RI+ 4 R3) + L3RS+ 3 RY).

(25)
[1-6(h_)][1-6(h,)][1-6(h,—h_)]=1,
S ) _ Jump probabilities for modifications of the WV model with
a particle jumps to the right, lower site-1. additional jumps in the case of a tie di. (25)]

These three expressions form a complete representation of 2) 11 0. 12 A
group 4 since the Kroneckerand discreted function satisfy Wiz, = Lo(Re+ Ry + R+ R+ 3 RY) + Lg(Ro+ 3 Rp)

6(—K)+ 6(K) =1+ 8(K). 22) +L1(Ry+Ro)P, (26)

Having the division of local configurations, we can immedi- ~ w{7, = L5(R3+R5+Ri+RI+ 3 R3) + L§(R3+ 3 Rp)
ately write down the probability of a jump to the left in the 1), 50 4 ol
F2 model +Lo (Ri+Rp)q. (27)
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L2=(1-6(h=))(1-0(=h-=)) L§=6(h=)6(=h_-) 9(¢)=[1+tanh(C¢)]/2, (29
-F t - where C is an arbitrary positive parameter, with the exact
1 # function being obtained in the limi€ —oe.
) In general, one can suppose that the regularization func-
— tion is given by expansion
1—-2 3 t—-2 1

0(¢)= go A (30)

Co Some author$§16,19 considered this form witl#\y=1,

i u
4+ L - >
Vi 0(&)=1+ >, ALK, (31)
—_— —_— k=1
=2 1 i—2 1

but we do not adhere to this restriction.
Our focus is on the properties of the surface on large
- length and time scales. Since the asymptotic scaling is deter-
L =(1-0(=h=))8(=h--)L} = (1= 8(-h-))(@ -8(-h--))  mined by nonzero terms of lowest order in Ef), we can

_L restrict ourselves in the expansions considered in Sec. Il to a
) } - finite order and neglect higher-order terms. In the calculation
G i below, we shall consider terms only up to the fourth order.
) ] | Since the argument of the function is always a height dif-
ference of neighboring sitgsvhich is of first order in space
—"—;—{-—> —'—2*—‘—’ derivatives, it is sufficient to treat expansiof80) also only
1 - ) 1= t

to fourth order

FIG. 3. Groups of semiconfigurations for models with growth 5(§)=A FALE+ALER+ A3+ AL LN (32)
rules depending on the number of bonds. The horizontal bar indi- 0 ! 2 8 4

cates the equality of heights and the meaning of arrows is the saMenea definition of the ContinuouE function by relation(22)

as in Fig. 2. yields the approximation up to fourth order
The Das Sarma—Tamborenea model makes no distinction be- ”5‘( £)=2Ag— 1+ 2A,&%+ 2A, &%, (33)
tween a site with one or two lateral neighbors, which results 0
in the following form of jump probability: Instead of the forn(29), we shall consider the “shifted”
form [27]
wisy=(Lg+L5)(Ro+ 3 Rg+ 3 RY). (28 -
0(¢)={1+tanjC(&é+a)]}/2, (34
VI. PASSAGE TO CONTINUOUS EQUATIONS where « is in the interval (0,1/2 a preferable choice

In this section we describe how to combine particular re-® =~ 1/2 gives a symmetric approximation to the discréte

sults obtained in previous sections together and how to carrgmcuon' the odd function W't.h r.espect .to the pqlnt
out the passage from a discrete to a continuous descriptioft.” —12. The reason for our choice is thaF W'Fh this choice,
Our calculations start with a discrete-value set of heigits we can satisfy relath(QZ), Whereas regularl_zat|o(r29) dp es

at discrete sites. In this representation we classify different not aIIovys us to define thé function. Relation(22) is im-
kinds of local configurationés shown in Figs. 2 andg and ~ Portant in models for MBE and thE2 model because we
we obtain a jump probabilitywi(z) for a particular model h_ave Fo distinguish, in the classification (_)f conf|gura.t|0n.s, the
[Egs. (21), (23), and (25)—(27)]. These expressions contain situation where the grgument of the dlscre?tefu_nctlon is
discrete & and & functions. However, the procedure de- zero. The regulgnzaﬂon ha}s to conserve this @fference, ie.,
scribed in Sec. Il assumes that? is a continuous differ- relation(22). This problem is not encountered in the case of

. ) ) . the single-step SOS or restricted SOS maodid], where
el on of e Space Coordn e b some gfauAnzaton(z9) can be vsed.
g gp : g From the behavior of the approximativefunction (34),

procedure in which the step functidiik), defined on the set . '
of integers by(20), is replaced by a continuous function we can see that coefficientg fulfill [27]

6(§). There is uncertainty in the form of the regularization Aoe(1/2,D), A;>0, A,<O. (35)
function 6(¢) and, as we will show below, different choices
can lead to different results. In Sec. VII, we show that much information can be obtained

Some forms of regularization functions have been sugwithout a detailed study of the coefficients,, assuming
gested in the literaturfl3,15,16,19 but to our knowledge only the validity of (35).
the problem of a proper choice of regularization scheme has Substituting continuous representationséofnd § func-
not been discussed. One suggested choice is tions (32) and(33) into the expression for the jump probabil-
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ity w(®) and retaining terms up to fourth order, we obtain the B. Wolf-Villain model

continuous stochastic Langevin equation in the form The coefficients for the WV model are

dh(x,t) _ a*h(xt) LMo d ah(x,t)\3 v=2A1(2Ag— 1)(Ag—1)2,

L ax? 3 ax\  ox
A1 =2(4A,—10AA, — 4A.AZ—8A3A,+ 2A A2+ 16A,A3
)\]_ 0',2 6’h(X,t) 2+Ko"4h(X,'[) +F+ t 1 ( 2 02 01 0/"\2 01 270
2 9x2\ " ax ax” 7.0, +A2),
(36)

No=6(—Ag+4AzA0+ A3+ 4A A, — 2AA3— 5A,A2
where coefficients, A1, N\, andK depend on the growth
rules of a model and on the regularization used and are ex-
pressed as a combination of coefficieAfs. A
~ We carried out this substitution and the following simpli- K= _1(_ 19+ 64A ¢+ 44A3— 95A2).
fications using symbolic manipulations. Thus we not only 6

avoided tedious work but also checked the completeness of N ] o o

the division into semiconfigurations. For each model, welhe coefficienty is positive in our regularization scheme
also independently found an expression M(,l) ie. the (34) with >0 and finiteC. In contrast to the Family model,

probability of sticking at an incidence site, we obtained thelt 90€S t0 zero whe@—cc. In the regularization schemes for
probabilitywim from Wi(z) using left-right symmetry, and we which conditions(35) are not strictly satisfied, for example,

- . in scheme (31) with Ap=1 or in scheme(29) with
checked the va}l|d|ty 0((2}1)' which served as a test of the Aqo=1/2, we get identicallyw=0, which contradicts the re-
proper expression fow; <.

sults of the simulation§8].

+BAZALA; + 2A3A;— 10AAA,),

VII. RESULTS C. Modified models
Here we present values of coefficients\, A,, andK The permission of upward jumpsvith probability p) in
appearing in the general form of the Langevin equat®®  the Wv| model tends to cause instability. From the expres-
for all models studied. sion for the Laplacian coefficient in this case,
A. Family model v=2A1(Ag— 1)[2A5—3Ao+1—p(2A5—5Ao+1)],

In the case of thé1 model, we have it can be seen that for amy, e (1/2,1) there exists a critical

v=2A;, N =2A,—2AcA,+A7, probability
A (2A0—1)(Ap—1)
_ M Pc= 7 ,
\2=6A3, K=5(4-3A), 2A2-5Ay+1

at which v=0. The behavior is similar to that of the WV
model, i.e., stable>0), for p<p., whereas we obtain a
—OAL(3—AA+ DA2 negative value ofv for p>p., which indicates u_nstat_)le
v (3 0 o), growth. Note again that for the scherf®l) we get identi-
cally »=0, in contradiction with results of simulations

whereas for thé=2 model, we obtain

N1 =4AcAZ—3AZ—2A A, +2A,,

[3,23].
3 5 There is no such transition in the W\model. The coef-
No=6(—4A1A,+9A;—2AT+ 8AzA+ 4A0ALA ficient
~164sA0), v=2A;(Ag—1)[2A5—3Ay+1—q(As+1)]
K= 31(12_ 19A,+8A2). increases with an increasing value of the probabiityl his

is in agreement with the intuitive expectation that the per-

o ) ) ) mission of additional downward jumps increases the stability

When coefficientsA, satisfy relations(35) then, in both  f the model and also agrees with results of recent simula-

cases, the coefficient is positive and the scaling is deter- tjons[23].
mined by the Laplacian terri29] (for the F1 model the
coefficientv is less than or equal to that for t€2 mode),

i.e., both models belong to the Edwards-Wilkins@E\W) D. Das Sarma-Tamborenea model

class as expected. When the form of regulariza(@h with The coefficientss, A1, \,, andK for this model are
Ag=1 is used there is no difference in coefficients\ 1, and _ _
K for both variants=1 andF2, which is also true for regu- v=0,A,=0,

larization (34), with a nonzero shift §>0) in the limit ) - - 3
Cow. A= 2(12A,A5— 4AAT+ AT+ 2A5AT—BAJA,— 2A0A,),
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K=AOA1(3+6A§—1OA0). pro_cedure we used is sensitive enough to distinguish both
variants properly.

In the case of relaxation models for MBE-like growth, our
results show that the asymptotic behavior is different for the

any Ak i.e.,_for any regula_rization_of the fun_ction. The WV model and the DT model. For the WV model, we found
coefficientK is strictly negative provided conditiori85) are a positive Laplacian term in the corresponding stochastic

satisfied. The absence of the Laplacian term implies pert"equation(i.e. the WV model belongs to the EW clasi
nence to a different universality class than the EW class. Thggreement with recent computer simulations of discrete mod-
resulting equation has the form of the so-called conserved|g [8,23]. Conversely, in the case of the DT model, we ob-

Note that the values of the coefficientsand\, are zero for

KPZ equation(see Ref[7]). tain a zero Laplacian term, and also the coefficient in front of
the termV (Vh)?2 is identically zero. The first asymptotically

_ ) in front of the fourth-order derivative is negative. Hence we
~ The procedure described above for the calculation ofyriyed at the conserved KPZ equation. However, the rough-
jump probabilities and determination of stochastic equatiothess exponent calculated from the height-height correlation
corresponding to the discrete relaxation model can beynction (the so-called exponer) in the DT mode[30,31]
straightforwardly generalized into2l dimensions introduc- is different from results of renormalization-group calcula-
ing two horizontal coordinates andy and considering all  tions for the conserved KPZ equatigs,9], and also the
possible combinations of space derivatij@8]. Now we  exponent for the time dependence of the surface w(tita
must investigate conditions at an incidence site and fouso-called exponeng) found in simulations of the DT model
nearest neighbors instead of at an incidence site and twi@0,3] is different from the exponent predicted by the
nearest neighbors as intll dimensions. renormalization-group calculatid®,9] or the exponent ob-

In the case of thé&1 model, we identify five configura- tained by direct integratiof82] of the conserved KPZ equa-
tion types according to the number of nearest-neighbor siteon. Here we should note that there is one feature of these
lower than the incidence site. We found that the stochastighodels that so far is not completely understood. It has been
equation governing the asymptotic behavior of BFfemodel ~ revealed in simulationg33,3( that both the WV model and

in 2+1 dimensions contains a positive Laplacian term  the DT model exhibit, over a long time, the increase of an
average step size that leads to anomalous scEBiag0,24.
ah(x,y;t) 2 5 In the WV model, the average step size saturates and so it
1t gA(Aet At does not effect the asymptotic behavior that is fully de-
scribed by the EW equation. However, in the case of the DT
92 52 model, it seems that the average step size increases infinitely;
X Wh(x,y)ﬂL &—yzh(x,y) + 7(X,y;t). moreover, the DT model displays another peculiarity: spatial

multiscaling[31]. If these features are really characteristic
, , . for the asymptotic behavior of the DT model then they
Because of the increasing number of relevant sites that d&nhould be ‘contained in the continuous description. On the
termine the sticking site of the incident partidf® in 1+1  other hand, properties of the conserved KPZ equation are
dimensions versus 13 in+2l dimensions and the corre-  only partially known[32,24). Our result provides a link be-
sponding rapid increasing number of configuration types, weween the DT model and the conserved KPZ equation, but
did not study models with growth rules dependent on thebecause of the approximative character of our procedure we
number of bonds in 21 dimensions, although it would be of cannot exclude that the continuous description of the DT
great interest. model is more complicated.
In the study of the WV model, we encountered a problem
VIIl. CONCLUSION cpnnected with the appr_oximat.ion of the discrete theta func-
tion that was not mentioned in previous works. We have

In this paper we have derived Langevin equations for disfound that the regularization procedure is a delicate problem.
crete growth models with local relaxation. We explicitly There is no rigorous treatment of the regularization proce-
studied the asymptotic behavior of several models with locatlure and consequently there is an uncertainty in the choice of
relaxation: the Family model, the Wolf-Villain model, and the regularization scheme. We have shown that the values of
the Das Sarma—Tamborenea model. Our results can be surefficients in the resulting Langevin equation can be quite
marized as follows. different for different approximations of the functions ap-

In the case of the Family model, we reproduced previ-pearing in the discrete Langevin equatiGé@ome schemes
ously known result§16], but in addition we have investi- lead to a zero Laplacian term in the equation corresponding
gated the effects of the modification of growth rules on theto the WV model. We do believe that a proper choice is that
resulting equations. We compared two variants of this modetonserving all symmetries present in a discrete model. This
with slightly different rules. For both modelsl andF2, we  choice is supported by the agreement of our results with
obtained a positive Laplacian term, which dominates the asresults of recent simulations. This problem does not affect
ymptotic behavior, i.e., the Family model belongs to the EWthe result for the DT model, where we obtain a zero Laplac-
class as expected. Moreover, in the liGit-~ for the pa- ian term independent of the approximation of théunction
rameter of regularization scheme, the values of the Laplaciansed.
coefficientr for both models coincide. This confirms thatthe  Our procedure can be straightforwardly applied also to
difference between both variants is slight and does not effeather relaxation models suggested in the literature
the asymptotic behavior. At the same time, we see that thgl1,31,23. An advantage of our procedure is the easy incor-
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poration of variations in growth rules in comparison to with a dependence on the surface height. We suspect that in
costly, extensive numerical simulations. We illustrated thisthis case the first step, i.e., the transition to a set of discrete
on two variations of the WV model. One of them, the Langevin equations, is not correct. Nevertheless, at the mo-
WV1 model(with upward jumps in the case of ajishows ment it is not completely clear why the method gives correct
an interesting behavior: a transition between stable and urresults in some cases while it breaks down in others. A math-
stable growth, which has been found in recent simulations asmatically rigorous formulation of the formal method is
well [3,23]. missing and more work is needed to clarify this problem, in
On the other hand, the method based on the formaparticular to understand the role of noise in this approach.
Kramers-Moyal expansion and the subsequent transition to a
continuous equation is not applicable in genera[ for models ACKNOWLEDGMENTS
with dynamics controlled by a local energy function. A spe-
cific feature of the model for which the failure of the method = We acknowledge useful discussions with Martin Siegert
was demonstratel®0] is that the functional contains an ex- and correspondence with Joachim Krug. This work was sup-
plicit dependence on the vertical size of a particle togetheported by Grant No. A 1010 513 of the GARC
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